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SUMMARY

This report should be used as a reference guide when using the finite

element method to approximate the static and dynamic behavior of flexible,

rotating blades. Important parameters such as twist, sweep, camber, co-planar

shell elements, centrifugal loads, and inertia properties are studied. Compar-

isons are made between NASTRAN elements through published benchmark tests.

The main purpose of this report is to summarize blade modeling strategies and

to document capabilities and limitations (for flexible, rotating blades) of
various NASTRAN elements.

INTRODUCTION

Rotating blades constitute vital components in several practical machines

such as, turbofan and turboprop engines and helicopter rotors. They can fea-

ture variable cross sections and spanwlse variations of sweep and pretwlst.

Because of their complex geometry, the finite element technique is a natural

choice for structural dynamic analysis.

Untll the mld-1960's, most of the structural dynamic analyses were based

on continuum beam methods such as Raylelgh-Ritz, Myklestad, extended Holzer

and Galerkln (see sample works of Rao and Carnegie (refs. l and 2)). In these

methods the blade is idealized as a pretwlsted cantilever beam. Hence, they

are mainly useful for high aspect ratio blades. With increased geometric com-

plexltles of modern blades, finite element methods have become more commonplace
for static and dynamic analyses. One widely used general purpose finite ele-

ment program is NASTRAN.

To employ finite element methods for rotating blades, analysts have to use
extra care to obtain rellable results. Specifically, this involves an investi-

gation into element selection, grid modeling techniques, boundary conditions
and effects of rotation. The purpose of this manual is to discuss applications

of the finite element technique to rotating blade structures. Typical test

problems are examined and solution procedures are reviewed and presented.

Emphasis is directed towards NASTRAN.

BACKGROUND

The finite element technique offers many options for the structural

dynamic analysis of swept and twisted blades. It is common practice to use
plate or shell elements of rectangular or triangular shapes. For vibration

analysis of skewed cantilever plates, an early application of this technique
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was used by Dawe(ref. 3) and Anderson, Irons and Zienklewlcz (ref. 4), using

rectangular and triangular elements, respectively. Olson and Lindberg (ref. 5)
employed the same technique for finding free vibration characteristics of

highly cambered blades using rectangular cylindrical shell elements. Rawtanl
and Dokalnlsh (refs. 6 and ?) reported static bending and free vibration

results of twisted cantilever plates.

Presently, a Joint government/Industry/unlverslty research effort is being

conducted to compare finite element methods for twisted cantilevered plates to

experimental data. The study involves two phases: Phase I considers only non-
rotating, twisted plates (refs. lO to 12) and Phase II extends this effort for

rotating plates (presently under investigation). What has evolved from the
first phase of this study is that a wide variation in submitted finite element

analyses exists and a careful application of this method is needed to accu-

rately predict the vibratory characteristics of highly twisted cantilever
plates. _

Many of the finite element results reported in references lO to 12 show

mark disagreements in predicted natural frequencies, particularly for highly
twisted plates. The triangular plate finite elements (including COSMIC/NASTRAN
CTRIA2 models) were typically deficient as were half of the shell and

three-dlmenslonal solid element formulations. Models using SAP quadrilateral

plates and MSC/NASTRAN CQUAD4 shells, showed good convergence over a wide range
of geometric parameters.

Improved multlblade propeller engines, called propfans, are being devel-

oped. Unlike conventional propellers, propfan blades are thin, flexible, shell-

llke structures with variable sweep and twist along their span. They are
subjected to relatively high rotational speeds that can cause large deforma-

tions at the blade tip. Because of the complex geometry of propfan blades,

finite element methods are a natural choice for deformation analysis. However,

recently documented finite element analyses of propfan blades have shown signif-

icant disagreements with experimental data of modal frequencies (ref. 13).

This report is the first of two that deals with the finite element anal-

ysis of flexible blade structures. A second report (refs. 44) is a primer
that summarizes the use of NASTRAN's large displacement and normal mode anal-

yses for flexible, rotating blades. In the present report, previously pub-

lished static and dynamic benchmark test problems are documented as they relate

to blade configuration parameters such as twist, sweep and camber. The report

is organized as follows. A discussion is first given of the types of approxi-

mations likely to exist in a finite element analysis of practical blades. For
completeness, applicable COSMIC and MSC/NASTRAN plate/shell and solid elements

are briefly described. Additional topics related to the subject are examined,

which include element comparisons, mesh arrangement and refinement, co-planar

shell elements, inertia properties, and centrifugal forces. Numerical solu-

tions and graphical comparisons, as reported by various investigators, are given.



FINIIE ELEMENTAPPROXIMATIONSOFBLADESTRUCTURESIN NASTRAN

The structural analysis of flexible, rotating blades has evolved from

simple beam theories to sophisticated finite element techniques. Finite ele-

ment grids for these blades can be divided into two categories, two-
dimensional and three dimensional. A two-dlmenslonal finite element mesh links

grld points on the blade's mld-surface by connecting these points wlth either

flat plate or shell elements. A three-dlmenslonal mesh involves more than one
surface of grid points, wlth two or more nodes In the thickness direction. The

grid points are connected with "solid" or "brick" elements.

A finite element analysis of rotating, arbitrarlly-shaped blades using

plates/shells or solids introduces four different types of approximations, as

quoted from Clough and Wilson of reference 14.

"First Is the geometric approximation involved in replacing the actual

continuous structural surface by an assemblage of discrete structural elements"

(ref. 14). For modeling of swept and twisted blade surfaces In NASTRAN, sev-
eral structural elements are available in the form of flat triangles (TRIA2,

TRIA3,TRIA6), flat rectangles (QUAD2,QUAD4,QUADS) or hexahedrons (HEXB,HEX20,

HEXAS,HEXA20). Each of these elements possess their own special features that

are pertinent to rotating blade structural analysis (refs. 8 and 9).

"The second basic assumption is that the strains (and/or displacements) in

each element may be only of limited form, as specified by a set of nodal inter-

polation (or "shape") functions" (ref. 14). Depending on the actual stress

variation placed on the blade at a given rotational speed, these assumed dis-

placement orders may provide a reasonably good approximation. The NASTRAN

higher order elements (TRIA6,QUADB,HEXA20,HEX32) that have quadratic or cubic

displacement variations, may provide better results than the lower order ele-

ments for a given degree of mesh refinement. On the other hand, more refined

elements that feature higher order displacement fields with additional global

degrees of freedom (DOF) would not be suited for the format of NASTRAN's gen-

eral element. A practical "rule of thumb" to consider In the analysis Is that

"simplest can be best." That is, theoretically, any inherent error found In
the calculated results of a coarse mesh consisting of simpler finite elements

tends to vanish as the mesh Is refined.

"A third approximation which may be present in some finite element anal-

yses Is that the assumed displacement patterns may not maintain Interelement

compatibility as the blade structure is loaded and deformed" (ref. 14). It Is

quite apparent that the problem of "co-planar elements" arises when using

NASTRAN's TRIA and QUAD shell elements in a large displacement analysis

(NAS_RAN SOLUTION 64 -- SOL64). Thls element breakdown comes from a variety
of sources. For instance, when modeling blades with hlgh sweep and/or twist,

the chord dimension at sections along the span are such that many elements may

have to be used to achieve a satisfactory level of solution accuracy. Element

incompatibility can develop when neighboring elements meet at a finite angle

during any particular iteration of SOL64. This causes the analysis to abort at

the global level, because the shell elements have 5 local degrees of freedom
(DOF) per node and the global transformation equations utilize 6 global DOF

per node.

Finally, the fourth approximation is that the three-dlmenslonal blade sur-

face may be treated as a two-dlmenslonal surface with simplifying constraints



on displacement variations through the blade thickness. In COSMIC/NASTRAN's
TRIA2 and QUAD2element formulations, the Klrchoff thln plate theory of plane

sections is assumed. However, less restrictive assumptions of forming a shell

element as a degenerate three-dlmenslonal solid element can be advantageous.
What results is that shear distortions may be accounted for without difficulty

by this approach. Ahmad (ref. 16) used thls approach by introducing a con-
straint that lines through the element thickness displace in translation or

rotation without distortion. Zlenklewlcz (ref. 15), Iron (ref. 16), and Pawsey

(ref. 17) also used degenerate solid elements to analyze arbitrary thin shells.

By using modified integration points to calculate shear strain energy terms in

the solid elements, overly-stlff element behavior in bending was suppressed.

From a practical standpoint, a good finite element is not necessarily the
one which exhibits a monotonic convergence. A more important criterion is that
the deviation from the exact result should be small, even when the blade is

subdivided in a relatively coarse mesh. Thls point is especially important

when using more refined shell and solid element assemblages, since they require
a great deal more computer memory and cost.

DESCRIPTION OF NASTRAN'S PLATE/SHELL AND SOLID ELEMENTS

From the preceding discussion, it is apparent that the type of element

utilized may have an effect on solution accuracy and rate of convergence. For

completeness, this section presents, as a brief catalog, those NASTRAN plate/

shell and solid elements that may be used. The elements are shown in figures l
to lO. Their principal features are listed below.

COSMIC/NASTRAN plate elements have two uncoupled stress systems, i.e.,
membrane and bending. COSMIC/NASTRAN solid elements are based on a standard
Isoparametrlc formulation, where identical approximation functions are used for

the element geometry and displacement. Differential stiffness formulations are

used for both the plate and solid elements In COSMIC/NASTRAN. These elements
are described below:

TRIA2 is a constant thickness triangular element with both In-plane and
bending stiffness (fig. l). The stiffness formulation is a superposltlon of a

constant strain membrane triangle with linear displacement order and of a basic

bending triangle with an eight term, cubic normal displacement order. Important

details of the stiffness derivation include: (1) bending slopes of the element

are obtained from the definition of transverse shear strain (assumed constant

in the element), and (2) a constraint such that the bending slope about the

x-axis varies linearly from side a-b (fig. l). Two TRIA2 elements Joined along

this boundary will have continuous displacements and slopes at all points.
Both lumped and consistent mass formulations can be used.

QUAD2 is a quadrilateral element comprised of two sets of overlapping tri-
angular elements (fig. 2). The a-b sides of the basic NASTRAN triangle lles

along a diagonal to ensure displacement and slope continuity within the ele-

ment. Since membrane and bending stiffness coupling is not available In

COSMIC/NASTRAN, the QUAD2 is formed by adding the effects of the overlapping
quadrilateral membrane element (QDMEM) with those of the overlapping quadri-
lateral bending element (QDPLT).



OTHER PLATE/SHELL ELEMENTS Alternative element formulations based on pre-

vious analyses posted in the literature can be used in COSMIC/NASTRAN. For

example, one might consider using the Clough bending triangle (ref. 18), which
can be superimposed with a NASTRAN membrane triangle to form a flat shell ele-

ment (fig. 3). However, this element is archaic for thin, flexible blade

applications in that it imposes additional constraints to ensure displacement

continuity within the element. Consistent mass formulations of this element

produce vibration frequencies on the high side, because constraint approxi-

mations, used in the stiffness calculation, are progressively applied in the
mass formulation.

A second choice might be COSMIC/NASTRAN's TRSHL element. This element is

a higher order triangular shallow shell element. The element approximation

comprises a quadratic membrane and a qulntlc normal displacement function.

Usage of TRSHL is low, most likely as a result of its inferior convergence on

shell benchmark test problems.

There is a more attractive alternative to using QUAD2 elements in COSMIC/

NASTRAN. Because of its potential for modeling curved surfaces, a quadri-

lateral shell element can be formed (manually in NASTRAN) out of four subdomaln

triangles with corner nodes not in the same plane (see fig. 4). The a-b side

of the basic NASTRAN triangle is placed on an exterior edge to ensure Interele-

ment continuity. The interior point c is located at the intersection of

straight lines connecting the midpoints of the sides (or at the average of the

four corner node coordinates). The membrane and bending DOF at point c can be

condensed out of the stiffness equations. Thus, the quadrilateral effectively

has only 20 DOF per element. Although static condensation of the interior
node introduces an additional constraint on this element, its level of engi-

neering accuracy is quite good. Similar elements proposed by Clough and

Fellppa (ref. 19) and Clough and Johnson (ref. 20) were placed in the SAP gen-

eral purpose finite element program. The twisted plate results shown in
reference lO using these elements were shown to perform well against those of
other finite element formulations.

HEX8 and HEX20 are standard eight and twenty noded Isoparametrlc brick

elements (figs. 5 and 6). The element geometry and displacements are approxi-

mated by linear and quadratic functions, respectively in the three local direc-

tions. The element coordinate systems are defined on the CHEXA Bulk Data
cards. Material reference is specified on the PHEX card. Reduced order

integration is available (via NGP-fleld on PHEX Bulk Data card) for both HEX8
and HEX20.

The MSC/NASTRAN element library includes both flat and curved shell ele-

ments, which support both membrane and bending action. The analyst has a
choice of four control options (via MID fields on PSHELL card) for stiffness

formulation: (1) membrane-only behavior, (2) bendlng-only behavior, (3) com-

bined bending and membrane behavior, and (4) materially coupled membrane-bendlng

behavior. These stiffness control parameters are important options for struc-

tural analyses. The shell elements in MSC/NASTRAN include the following:

TRIA3 and QUAO4 are the three noded triangular and the four noded quadri-
lateral elements, shown in figure 7 and B, respectively. General capabilities

include: (l) identical approximating functions for element geometry and dis-

placements, (2) 5 DOF per node, i.e., two membrane displacements and one bend-

ing displacement and two bending rotations, (3) thickness can vary over the
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element surface, (4) lumped and consistent mass formulation, (5) selective
integration for shear terms (QUAD4 only), (6) enforcement of bending curvature

compatibility (QUAD4 only), (7) transverse shear flexibility to account for

bending behavior (QUAD4 only), and (8) full geometric nonlinearity. All forces
and moments are evaluated at the centrold of the element. Use of QUAD4 ele-

ments requires that all interior angles be less than IBO °. A special feature

of the QUAD4 elements is that all points do not have to lle In one plane. When

modellng highly swept and twisted blades, enough QUAD4 elements should be used

so that individual element warping is small. According to (ref. g), "for

modeling curved shell structures a tentative rule Is that the included angle

per element should be lO° or less to obtain errors of 4 percent or less in
deflections.

MSC/NASTRAN's curved shell elements are the following:

TRIA6 and QUAD8 are the six noded triangular and eight noded quadrilateral
curved thin shell elements, respectively shown in figure 9 and lO. The assumed

displacement and geometry of these elements are of hlgher-order than their low-

order cousins, described above. Also, these curved shell elements can connect

six and eight grid points, respectively and they contain all of the features
of their flat shell counterparts. Note that QUAD8 uses a standard Isoparam-

etric formulation (i.e., identical approximation functions are used for both

element geometry and dlsplacements). QUADS does not have transverse shear

flexibility terms llke its QUAD4 counterpart. For the TRIA6 and QUAD8 elements,
all forces and moments are evaluated at the centrold and at the vertices of the

element.

MSC/NASTRAN's solid elements are the following:

HEXAB and HEXA20 The HEXA series of elements (figs. 5 and 6) in MSC/NASTRAN

are improvements to the HEX8 and HEX20 slx-slded brick elements in COSMIC/
NASTRAN. These elements use Isoparametrlc representation to characterize the

element behavior. The HEXA8 is the three-dlmenslonal analogy of the two-

dimensional blllnear quadratic QUAD4 element and the HEX20 is the three-

dimensional extension of the two-dlmenslonal blquadratic cubic QUADB element.

The HEX8 element contains the same type of shear correction used to improve

the membrane shear behavior of its two-dlmensional cousin. In addition, a

reduced order of integration (vla IN-fleld on PSOLID card) can be used for the
shear strain contributions to the stiffness calculations. This Is discussed

in the next section.

STATIC AND DYNAMIC BENCHMARK TESTS FOR BLADE STRUCTURES

The proceeding element descriptions are insufficient to make a decision
on which elements are best to use for a particular blade. Lacking in the

NASTRAN documentation are the performance of its elements in standard benchmark

test that are applicable to swept, twisted or cambered blades. For example,

some test problems that measure efficiency of plate/shell or solid elements

include: (1) Scordells-Lo shell problem, (2) patch test (which measures con-

vergence of an assemblage of elements), (3) untwisted cantilever beam with

point load at the free end, (4) swept cantilever beam wlth point load at the

free end, (5) swept plate with uniform load, (6) twisted cantilever beam wlth

point load at the free end, (7) twisted cantilever plate (normal mode vibra-

tions), and (8) cantilever blade with camber (normal mode vibrations). Many of



these tests have been documented In surveys of finite element codes, namely
Fong and Jones (ref. 2l) and Harder (ref. 22).

Although the results of these published tests do not completely test the
elements, they are sufficient for making preliminary decisions regarding finite
element modeling of practical blades. More importantly, they reveal inherent
deficiencies In a number of the NASTRAN plate/shell and solid element formula-
tlons. The succeeding subsections examine these benchmark test problems.
Specific blade modeling aspects are discussed such as irregularity of mesh
arrangement, mesh refinement, element length and thickness ratios, element
warp and skewness, and modified integration within elements.

The Scordells-Lo Shell

Figure II shows the problem and table I and figure 12 display the conver-

gence behavior of NASTRAN QUAD and HEXA elements In a rather severe test of
bending behavior. The data has been compiled from references 21 and 22.

Figure 12 shows excellent convergence of QUAD4 between the analytical shallow
shell and the exact deep shell solutions. This suggests that thls element Is

quite suitable for highly cambered blade models. Although the results of TRIA2
tend to overshoot the mark, the convergence Is inconclusive. With a coarse

mesh thls is to be expected, since the transverse shear strain Is assumed con-

stant in the TRIA2 element formulation. QUAD2 are typically overstlff even

for large numbers of DOF. Transverse shear flexibility In QUAD4 explains Its

obvious suitability for thls benchmark test problem.

To shed light on NASTRAN's higher order elements, consider the normalized
vertical deflection data for the Scordells-Lo shell In table I. This data

reveals that QUAD4 and HEX8 exhibit a strong convergence from above, and that

QUAD8 and reduced integration forms of HEX20 show an oscillatory pattern of

convergence. Clearly, QUAD8 portrays the best numerical behavior for this
problem wlth Its quadratic shape functions for Its geometry and displacements.

QUAD2 and HEX20 (without reduced integration) are typically overstlff.

The Patch Test

In some dlsplacement-based element theories approximating functions may

violate Interelement continuity of displacements. This causes infinite strains

along the element boundaries. Elements characterized by thls behavior are
called "nonconforming elements." In the limit the formulation may converge to

the correct answer wlth increasing mesh refinement. Necessary conditions are

(1) that zero strain exists In the element during rigid body motion and (2)

that the assumed displacement function contains terms for which constant strain
modes are obtained.

To ensure that convergence may be achieved, nonconforming elements must

pass a patch test (ref. 40). Thls test involves an arbitrary assemblage of

oddly shaped elements subjected to a constant straln/stress condition. If the
resulting nodal displacements cause a constant stress state within the element,

then the patch test is not violated. Nonconforming elements that pass this
test have convergent results wlth mesh reflnement, and at times wlll exhibit



better behavior than conforming elements. However, note that nonconforming
elements that violate the patch test will not necessarily produce unacceptable
results.

Figures 13 and 14 depict typical patches for plate and solid elements in
a severe test for bending action. Results tabulated In table II (ref. 22)
showmaximumerror in stresses for QUADand HEXAelements. Someobservations
can be madefrom this data. HEX8with linear strain and HEX20with quadratic
strain are conforming elements. As expected, the patch test is not violated.
However, the HEX20with reduced integration, which is nonconforming, passes
the test.

Of the plate elements, QUAD2 fails the patch test, because bending rota-
tions in this element are derived from a constant transverse shear strain var-

iation within the element. Thus, it cannot represent a constant curvature

state. On the other hand QUAD4 exhibits both force and moment convergence,

mainly due to correction terms for transverse shear flexibility imbedded in

the formulation. These correction terms do not change the rigid body modes of
the element nor do they eliminate the pure shear deformation behavior of the

element. They only modify the magnitude of the stiffness coefficients and the

locations where the strains are computed. QUADS is an Isoparametrlc, conform-

ing element without the above devices to improve its bending behavior. This
may account for its poor convergence in table II.

Effect of Element Distortion

Careful attention should be given to preserving isosceles, square and cube

shapes of NASTRAN TRIA, QUAD and HEX elements, respectively. To illustrate the

effect of distortion in NASTRAN elements, figure 15 displays three untwisted

cantilever beams with different mesh arrangements. The geometric dimensions,

material parameters and load conditions are shown in the figure. In the first

case the elements are undistorted. This case is designated as a regular mesh
(Reg) arrangement. For the second case the elements sides are skewed at a

45° angle to form trapezoidal shape elements in the first of two irregular mesh

(IRReg) arrangements. Finally, the last case shows an IRReg arrangement of
parallelogram shape elements with sides also skewed at 45°.

Normalized displacement response at the beam tip is tabulated in table III

for extensional, flapwise bending, edgewise bending and torsional modes. Some

observations can be drawn from the numerical data. First, the extensional and
torsional modes are independent of element distortion. Identical results were

obtained for the regularly and Irregularly-shaped elements. This is indicated

in table Ill by the (BOTH) notation. Second, the change in results between the
two IRReg arrangements is negligible. Third, MSC's QUAD4 seems to show a mark

degradation of accuracy in the flapwlse bending mode of IRReg models, while its

three-dlmensional cousin, HEXA8, exhibits an error in both the flapwlse and

edgewise bending modes. In a paper on QUAD4's formulation (ref. 23), the

author cites this effect of element distortion: "After the paper was submitted

for publication, it was discovered that large errors occur when the skew angle
of the element exceeds 20 °. This error was traced to coupling between trans-

verse shear strains, and has subsequently been corrected" (1978). Apparently,
this deficiency is still present in QUAD4 as illustrated by these more updated
results (ref. 22), and thus, the 20° limit on element skew should be used when
using QUAD4 or HEXS.



With the exception of the above remarks, all of the elements in table Ill

display good to excellent convergence. Note that QUAD2, although not shown,
performed poorly in the edgewise bending and torsional modes (ref. 22). Thls

deficiency is, again, related to the constant transverse shear strain assump-

tion in the QUAD2 element formulation.

Cantilever Beam wlth Sweep

Recently developed propfan blades are highly swept at the tip (approxi-

mately 35° In some proposed models (ref. 33)). To illustrate NASTRAN plate/
shell and solid element performance on swept blade configurations, conslder

the curved cantilevered beam shown in figure 16. The beam is curved (or swept)

in its own plane with an included angle of 90°. Table IV displays results for

two tlp load conditions. As expected, the QUAD2 exhibits overstlff results for
both directions. But, QUAD4 and HEX2D both show average convergence In the

In-plane response direction and good convergence in the out-of-plane direction.

Better still, reduced integration forms of HEX20 and QUAD8 portray the best

results by far.

Morley's Simply-Supported Swept Plate (ref. 24).

In 3une 1983, a user project on sweep effects in plates was proposed in

Finite Element News (ref. 25). The investigators received participation from

numerous researchers and users. The scope of submitted finite element results

revealed 33 plate bending element formulations and employed lg finite element

computer codes. Three finite element mesh densities were requested to test

convergence of predicted center point displacements of slmply-supported plates.
A total of four sweep angles were requested to show distortion sensitivity of
the finite elements. This section discusses the MSC/NASTRAN results.

Figure 17 shows a schematic description of the proposed plate model. The

series solution developed by Morley (ref. 24) Is given in table V. The MSC/

NASTRAN results reported (ref. 25) are for the QUAD4 and TRIA3 elements. The

triangles are chosen so that all rectangles are cut along the shorter diagonal,
as shown in figure 17. At zero sweep, the plate mesh is symmetrical. This

ensures a maximum number of triangles at the center point of the plate, where

maximum force and response is anticipated.

Numerical data tabulated in tables VI and VII show the percentage error

In calculated moment and response of using QUAD4 and TRIA3 elements. These

percentage errors are based on Morley's series solution for the maximum and

minimum bending moments and the vertical displacement at the plate center.
Results for the three mesh conditions are given for sweep angles of 30 to go °

as designated in figure 17. Although the tabulated results show the effects

of sweep, they also include the effect of aspect ratio (a/h) (see flg. 17).
Since the plate has a constant boundary length (a), the value of h wlll change

for each sweep angle. The aspect ratio for an unswept plate Is assumed to be

unity. The aspect ratio values increase wlth sweep angle to a final value of
two for 30 ° sweep.



Additional points can be drawn from the data in tables VI and VII. Gen-

erally, with both QUAD4 and TRIA3 element assemblages, an error is apparent

for plates with sweep angles between 40 and 60°. As sweep angle is increased,

the difference in accuracy of calculated moment and response between the QUAD4

and TRIA3 elements diminish. Intuitively, this is suspected to be an effect of

aspect ratio (which is further discussed in a later section). For the larger

sweep angles at a given mesh densities, the QUAD4 and TRIA3 elements become

quite distorted in shape. Thls distortion Is a major contribution to the error

of the predicted results. Thus, it is safe to suggest that a refined mesh
yields more accurate results for highly swept plate models. This will yield

better-shaped QUAD4 and TRIA3 elements In the mesh.

Cantilever Beam with Pretwlst

A cantilever beam with 90 ° twist from root to tip Is shown in figure IB.

Table VIII compares NASTRAN triangle and solid element prediction of displace-
ment response at the beam tip for two bending directions. All elements per-

formed quite well for each response mode with TRIA6 and reduced integration
form of HEX20 as particular standouts.

Element Aspect Ratio and Modified Integration

An indirect effect of element aspect ratio Is shown by the normalized

deflection response data for a quarter-plate mesh of NASTRAN's QUAD or HEX
elements in figure Ig and table IX. Plate aspect ratios of l and 5 are used

as example test cases. Note that the HEX20, shows poor results for the very
coarse meshes. However, the HEX20R improves these results very significantly.

The HEX20R stiffness coefficients are calculated by modifying the evaluation of

strain energy In the HEX20. The essential difference here is that the number

and location of the integration points used within the element to evaluate the

shear strain energy terms are chosen differently. Details of this technique

are inappropriate here, however, the basic Idea can be explained by referring

to the Isoparametrlc quadrilateral in figure 20.

It can be seen (fig. 20(b)) that an actual residual bending occurs due to
transverse shear action, when the element is subjected to a pure bending

stress. This residual bending becomes very significant as the aspect ratio of

the element is increased. The assumed displacement functions require that the

element edges remain straight under pure bending (solid lines), where in fact,

the edges should be curved (dashed 11nes). If the transverse shear effect were

omitted the element stiffness representation would be substantially improved.
Note that the strain due to pure shear stress (fig. 20(c)) should remain. A

practical procedure to obtain the shear strain terms for HEX elements Is to

use its centrold as the integration point; this neglects the shear strain of

figure 20(b), yet retains that of figure 20(c).

The use of modified integration points, chosen so as to suppress undesir-

able element behavior, is noteworthy. Particularly, it is quite effective in

beefing up the bending action of three-dlmenslonal Isoparametrlc elements, when

they are used to model thin or moderately thick blade surfaces. Thls element

modlflcatlon Is especially beneficial as the element aspect ratios becomes

large. Note that this element improvement device is not fail-safe. Because,

lO



as element aspect ratios becometoo large, mesh redefinition may be the only

alternative approach.

Cambered Blade and Twisted Blade Vibrations

Thls section examines benchmark tests for vibration analyses. The cam-

bered compressor blade described In figure 21 was analyzed by MacNeal (ref. 23)
in a severe vibration analysis test of QUAD4 elements. The numerical results

are tabulated in table X. Eight free vibration modes are given along wlth some

comparative data from Olson and Llndberg (refs. 5 and 29). All modes were pre-

dicted extremely well. However, the second mode is a particular stand-out,

because its reflned results agrees more with Olson's analytical calculations

and not wlth experiment. The probable source of error comes from support com-

pliance in the prediction of the second mode. Because thls mode is typically

characterized by no surface nodal lines In camber blade configurations, It is
difficult to accurately model its support condition.

Although finite element analysis for plate vibrations has become common-

place, "significant differences in the published results for various methods
of analysls have raised some doubt concerning the adequacy of these methods to

accurately predict the vibratory characteristics of highly twisted cantilever

plates," according to Klelb, et al. (ref. lO). They continue to explain, "An

example of the types of difference existing In the literature is the predicted

first bending frequency for pretwlsted plates. The predicted dependency of

frequency on twist angle for twisted, cantilever plates spans the spectrum from

increasing significantly to decreasing significantly. To be more specific,
the trends seen in the literature are: reference 30 - significant increase,

references 31 to 33 - slight increase, reference 34 - no change, references 35

and 36 - significant decrease, references 37 and 38 - slight decrease and then

an increase, and references 7 and 39 - significant decrease."

Two proposed TRIA2 and QUAD4 grids for the twisted plate model In

figure 22 were recently submitted to a finite element users project (refs. lO

to 12). The TRIA2 grid Is shown for a plate of aspect ratio (a/b) equal to l

and a total plate twist of 45° A total of 360 DOF and 12B elements are used

with 9 nodes in the spanwlse and chordwlse directions. A lumped mass formula-
tion is utilized. The QUAD4 grid represents a plate wlth a/b = 3 and a total
twist of 60°. A total of 550 DOF and lO0 elements are used with II nodes In

the spanwlse and chordwlse directions. A consistent mass formulation Is
employed. Figure 22 also shows the dependence of frequency parameter on twist

angle for a/b = l only. The results of the TRIA2 and QUAD4 elements and those
of experiment are highlighted over the finite elements results used by other

investigators. It Is apparent that the predicted first bending frequency var-

latlon Is significantly increasing for the TRIA2 model (highlighted with dots),

whereas the trend for the QUAD4 model Is significantly decreasing (highlighted

with stars). Note that the two experimental results (shown as dotted lines)

depict a significantly decreasing trend. In all modes shown, the TRIA2 models

is predicting overly-stiff results compared to those of the QUAD4 model.
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Summaryof Test Results

An attempt has been madeto grade the TRIA, QUADand HEXelements in their
performance In the above tests. The results are given In tables XI and XII.
An average rating and an approximate grade for each element is compiled at the
bottom of the table. Based on the Judgmentsof the author, QUAD4and TRIA3
exhibited the best overall performance and Is the recommendedchoice amongst
the NASTRANplate elements for practical blade applications. Both of these
elements pass the patch test, which ensures (in the limit) convergence of solu-
tion. Of the NASTRANsolids examined, HEX20with modified integration per-
formed the best and is highly recommendedfor three-dlmenslonal analysis of
thin or moderately thick blade planforms.

CO-PLANARSHELLELEMENTSIN NASTRAN

While using NASTRANshell elements, undesirable difficulties arise when
these elements are Joined at finite angles. Thls element Joining Is commonly
referred to as "co-planar elements." The problem is especially acute, while
the blade is loaded and deformed during particular subcases of NASTRANSDLUTION
64 (large displacement analysis). Essentially, a surplus of degrees of freedom
(DOF) corresponding to an In-plane rotation originates in the transformation
phase of NASTRANshell elements and can cause singularity of the global stiff-
ness matrix. What results is a solution that either requires a large number
of subcases for convergence or leads to nonconvergence.

To clarify this point, consider the example shown in figure 23. Here,

representative triangular elements have individual nodal parameters correspond-

ing to membrane and bending actions. If the triangles are not co-planar In an

assembly, the common node A Is capable of resisting 6 independent responses,

when the nodal parameters are transformed Into global coordinates. However, If
the elements are co-planar, only 5 DOF will exist and thus, global transfor-
mations will create zero stiffness coefficients in the sixth DOF. The TRIA3

and QUAD4 elements are more likely to have co-planar difficulties than the

TRIA6 and QUADS, since the mldslde nodes ensure better compatibility of the
local normals of adjacent elements.

To overcome this source of difficulty, a variety of practical procedures

have been used in the analysis of arbitrary shells. An indirect approach
involves taking, as the normal, the average of the normal directions associated

with each of the elements connected at a particular node of the shell. When

the element stiffness has been transformed to the global system, the sixth DOF

is eliminated by deleting the corresponding row and column from the global

stiffness matrix. Eliminating this DOF is equivalent to constraining the shell
structure against thls motion.

Physically, the shell Is quite stiff in thls normal rotation, so the

imposed constraint has a negligible effect on its response. Thls point Is
clarified by the data in table XIV. A cylindrical shell Is clamped at one end

(fig. 24), and allowed to deflect under its own weight (ref. 41). Flve differ-

ent lengths are considered, ranging from 25 to 200 ft. Plane quadrilateral
shell elements are used wlth meshes having 5 nodes in the circumferential

direction and 6 to II nodes in the spanwlse direction, depending on the shell
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length. The computed vertical deflections at the free end show that for the

very flexible shell configuration, the effect of the sixth DOF constraint Is

negligible.

A more direct remedy to the co-planar element problem Is to insert an

arbitrary stiffness coefficient In the sixth DOF of the element stiffness
matrix. After transformation to the global system, a perfectly well-behaved

set of equations is achieved from which, all displacements and stress result-
ants, including those corresponding to the sixth DOF, are obtained. A ficti-
tious set of normal rotation stiffness coefficients for triangular shell

elements (table XV) have been suggested by Zlenklewlcz (ref. 42). Similar
matrix terms can be added for rectangular elements. These additional terms are

far better than Just placing small terms on the diagonal, because they pass the

patch test, when added to the element stiffness matrix. Llke the first method,
the effect of these fictitious springs on calculated results Is negligible.

A new parameter card K6ROT exists In MSC/NASTRAN (versions 63 and higher)
that does this automatically. Actually, for QUAD4 and TRIA3 only, the added
artificial stiffness coefficients are similar to those of reference 42. A

recently completed study (ref. 43) revealed that values of the parameter K6ROT

of lO00, lO 000 and lO0 000 alleviated the singularity problems and gave

smoother responses for advanced turboprop blade models on an element-toelement

and node-to-node basis.

Figure 25 displays strain gage locations and two finite element grids

(using QUAD4 and TRIA3) for a SR-3C-3 propfan blade, which was analyzed In the

study of reference 43. The value of K6ROT was varied to show that frequencies

and response are not significantly changed with the variation of this arti-

ficial plate normal stiffness. It was also noted that predicted strains were

not significantly affected by changes in K6ROT. Additionally shown in the

study was that the element-to-element strain variations became much "smoother"

when the triangles were made more nearly equilateral or when the triangles
were eliminated and QUAD4 elements were used (fig. 25).

Table XVI presents frequency results for the QUAD4 grid model at 0 rpm

using K6ROT = O, lO 000 and lO0 000. A faster convergence rate to a steady-
state response of the blade is observed wlth K6ROT = lO,O00, where a total of 6
subcases were needed in NASTRAN Solution 64, instead of 25 subcases (with

K6ROT = 0). Additionally, increased values of the K6ROT parameter resulted In

small changes in the calculated modes. NASTRAN runs using K6ROT = lO,O00 with
TRIA3 are also shown In table XVI. Strain gage results for the propfan blade

rotating at a speed of 8508 rpm are given in table XVII. Strain gage locations

are shown in figure 25. Gage 1 measured a strain in the radial direction of

the blade. At gage 2 a strain was measured In the circumferential direction,
while a shear strain was measured at gage 3. Again, measured strains at the

gage points of both the QUAD4 and TRIA3 elements were not significantly

affected by changes in the K6ROT parameter.

From the study (ref. 43) it was concluded that the use of K6ROT to add

artificial plate normal stiffness significantly reduced element-to-element
strain variations in the finite element models of the flexible blades examined.

Additionally the nonlinear steady state solution converged much faster than
when alternative procedures were used. A value of K6ROT = lO,O00 was shown to

give good results for the practical blade models.
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A companion memorandum (ref. 44) gives specific NASTRAN data instructions
on the use of PARAMeter card K6ROT.

EFFECT OF CENTRIFUGAL STIFFENING AND SOFTENING FORCES

Consider a straight cantilever blade undergoing bending vibrations per-
pendicular to the plane of rotation. The centrifugal tensile force tends to

stiffen the transverse bending elastic springs. In vibration analysis, this

force generally increases the square of the natural frequencies in proportion

to the square of the rotation speed. The constant of proportionality is known
as the Southwell coefficient (ref. l). Centrifugal stiffening effects are

placed in the finite element formulation through supplemental strain energy

terms due to the initial stress of steady-state rotation.

In a rotating reference frame, there is an additional force that acts in

the radial and circumferential directions of the blade. As a mass point dis-

places radially outward, there is an effective increase in the total magnitude

of centrifugal force carried by this point that is proportional to its total

displacement. When this effective centrifugal force increase is algebraically

added to the incremental elastic stiffness (i.e., brought from the rlght-hand
to the left-hand side of the equation of motion), a reduction in elastic stiff-

ness of the system is apparent. This stiffness reduction is called "centri-

fugal softening." In vibration analysis, this force has the effect of reducing

the natural frequencies. Centrifugal softening effects are incorporated in the

finite element formulation by subtracting the mass times the square of the
rotational speed from the stiffness matrix (see ref. 44 for detailed

formulations).

To illustrate the effect of the centrifugal stiffening and softening
forces, consider the flat cantilever blade with length ratio equal to 3. The

axis of rotation is placed at the root section. This problem is the second of

two phases of a Joint research effort on vibrations of twisted blades (refs. lO

to 12). Tables XVIII and XIX each show five sets of submitted results of non-

dimensional frequencies for the first five modes at three-nondimenslonal

rotation speeds (0,2,6). For the results in table XVIII, all mass points of

the plate are spinning in the plane of rotation, whereas a go ° setting angle

of the plate is assumed for the cases of table XIX.

As expected, an apparent increase in the frequency parameter is observed

as a result of the centrifugal stiffening effect due to rotation. Investiga-
tors A,C and D included centrifugal softening in their formulations. Investi-

gators B and E omitted this effect. From the numerical trends in table XVIII,

it is quite obvious that the centrifugal softening effect is essential to the

accuracy of frequency calculations of rotating blades. With a 90° angular

rotation of the plate, the centrifugal softening effect disappears. Thus, this
effect is dependent on the blade's setting angle at the axis of rotation (or

root section).

The question of inserting centrifugal softening terms in a NASTRAN run of

a practical blade is important, especially when large displacement effects are

considered. NASTRAN specific data instructions for insertion of these terms

are inappropriate to discuss herein. These aspects are dealt with in
reference 44.
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EFFECTOFCORIOLISFORCES

In addition to the centrifugal stiffening and softening forces present In

rotating blades, there exist Corlolls forces that affect the blade response at

relatively hlgh rotation speeds. Corlolls forces are produced when a mass
point of the blade displaces relative to a rotating reference frame. These

forces are perpendicular to the plane containing the rotation axis of the blade

and the instantaneous velocity vector of the mass point. They are proportional
to the vibratory velocities, but unlike viscous damping forces, are path-

independent in nature. In a finite element formulation, the contrast between
Corlolls and damping forces is the skew-symmetrlc versus symmetric form of
their matrices.

Many investigators have considered Corlolls forces in their blade vibra-
tion analyses and have commented on the significance and importance of this

effect. One such work is that of Sreenlvasamurthy and Ramamurti (ref. 47) in

the effect of Coriolis forces on rotating plates. Here, triangular plate

finite elements wlth uncoupled membrane and bending stress behaviors were

utilized. Their results showed that for a uniform thick plate of aspect ratio

equal to one and rotating at a speed near the first nonrotatlng frequency, the
first bending and torsional frequencies decreased by 3.23 and 8.02 percent

respectively, due to Corlolls forces. The overall effect of these forces were

most significant for plate setting angles of 45°. The authors stated that for
plates rotating at high speeds inclusion of Corlolls forces in the computation

of natural frequencies is desirable.

However, upper bound solutions for the free vibrations of rotating canti-

lever plates have recently been reported by Co (ref. 48). For thin plates of

aspect ratio equal to one, Co found the most significant change in the funda-
mental mode due to Corlolls terms to be less than O.l percent at a rotation

speed equivalent to three times the nonrotating frequency. It was also noted

that by increasing the plate thickness the Coriolis effect increases, but no

more than l percent for the fundamental mode.

The Ritz method utilized in reference 48 provides upper bound solutions.

Generally, the significance of Corlolls forces arises at very high rotation

speeds of thicker blades mounted at high root setting angles. Modern propfan

blades operate at more realistic rotation speeds and do not fall into thls

category. Thus, in these blades Corlolls effects are typically small and

negligible.

LUMPED VERSUS CONSISTENT MASS MATRICES

The mass matrix formulation in NASTRAN Is lumped unless the analyst

requests the consistent formulation by means of a PARAM COUPMASS Bulk Data
card.

In a lumped mass formulation inertia properties are assigned to the trans-

lational and rotational DOF only. The total mass In each element is distri-

buted to the nodal points In an averaglng-type of fashion, depending on the

element type. In consistent mass formulations the mass matrix Is calculated

with the same approximating functions used in the stiffness formulation. That

is why the word "consistent" Is used. Imposed constraints used In the stiff-

ness formulation are progressively applied in a consistent mass formulation.
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Therefore, It ls suggested that a lumped mass be used with nonconforming
elements and a consistent mass wlth conforming elements.

CLOSING REMARKS

Progress toward reliable and efficient finite element procedures for

rotating, flexible blade structures can best be descrlbed as uneven. A major

reason for the slow rate of development Is the conceptual challenge facing
blade analysts in using the finite element method to approximate the blade's

deformation behavior under static and dynamic loads.

To address the above challenge, blade analysts can use thls manual as a

preliminary reference tool. Comparisons are made between NASTRAN plate/shell

and solid elements through published benchmark tests that are applicable for

studying different blade related parameters such as twist, sweep and camber.

The purpose of this report Is to provide a summary of blade modeling strategies
and to document capabilities and limitations of various NASTRAN elements. The

question of implementing the NASTRAN capabilities for practical blades Is also

important in the intended application to large displacement and frequency
analyses, where substantially more complex finite element modeling strategies

must be dealt with. These aspects are taken up In a companion report
(ref. 44).
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1ABLEI. -RESULTSFORSCORDELIS-LOSHELL

Numberof Normalized vertical deflection at midpoint (B) of free edge
node spaces
per edge of QUAD8 HEXA(8) HEX20 HEX20(R)

model

2
4
6
8

lO

QUAD2 QUAO4

0.784 1.376
.665 1.050
.7Bl l.OIB
.854 1.008
.897 1.004

1.021

.984

1.002
.997
.996

1.320

1.028

l.Ol2
1.005

0.092

.258

.589

.812

1.046
.967

1.003
.999

TABLE II. - PATCH TEST RESULTS

Constant-stress loading
Constant-curvature loading

QUAD2

0
30.7

Maximum error In stress, percent

QUAD4 QUADB

18
51.6

HEXA(B)

0

N/A

HEX20

0

N/A

HEX20(R)

0

N/A

TABLE Ill. - RESULTS FOR UNTWISIED CANTILEVER BEAM

[Reg. = No element distortion, IRReg. = element

distortion.]

Mode Normalized response at beam tip

(Mesh)
QUAO4 QUADB HEX20 HEXA8 HEX20(R)

0.996 0.999 0.995 0.989 0.994Extension

(Both)

Flapwlse

(Reg.)

Flapwlse

(IRReg.)

Edgwlse

(Reg.)

Edgewise

(IRReg.)

Torsion

(Both)

.904

.752

.986

.973

.946

.987

.971

.991

.992

.953

.923

.967

.916

1.020

.981

.746

.653

.910

.966

.927

.931

.904
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TABLEIV. - RESULTSFORCANTILEVERBEAMWITHSWEEP

Tlp loading
direction

In-plane (vertical)
Out-of-plane

Normal

QUAD2

0.025
.594

Ized tlp displacement in direction of load

QUAD4

0.833
.951

QUAD8 HEXA8

1.007 0.880
.971 .849

HEX20

0.875
.946

HEX20(R)

1.006

.959

R - Reduced integration.

TABLE V. MORLEY'S SERIES

SOLUTION (REF. 24)

[w c = axlO-3;

aM = BxlO-2;
max

aMmln = yxlO -2 .]

Angle,
6

90 °
80 °
60 °
40 °
30 °

Series solution

B

1.4087 4.86

.9318 4.25

.3487 2.81

.1485 1.91

4.48

3.33

l.80
1.08

aThe principal bending

moments are given by

= M ÷ Mb andMmax a

Mml n = Ma - Mb where

M = I/2(M ÷ M ) and
a x Y 2 2 I/2

Mb = [I/4(m x - My.) ÷ Mxy]
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TABLE VI. - PERCENTAGE ERROR

IN Wc - BASED ON SERIES

SOLUIION (REF. 25)

Angle,
6

90 °

BO°

60°

40°

30°

Mesh

4x4

8x8

14x14

4x4
8x8

14xl4

4x4

8x8

14xl4

4x4

8x8

14xl4

4x4
8x8

14x14

MSC/NASTRAN

QUAD4 TRIA3

-2.68 -10.13

•09 -2.82
.16 -.9?

-9.74 -17.15

-3.63 -6.95

-2.12 -3.52

-24.00 -35.76
-16.26 -19.41

-12.53 -13.11

-29.97 -4?.47
-25.93 -29.29

-21.88 -21.88
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TABLEVII. - PERCENTAGE ERROR

IN M - BASED ON SERIES
max
SOLUTION (REF. 25)

Angle,
6

90 °

80°

60°

40 °

30°

Mesh

4x4
8x8
14x14

4x4

8x8

14x14

4x4
8x8
14x14

4x4

8x8

14x14

4x4

8x8

14xl4

MSC/NASTRAN

QUAD4 TRIA3

-17.04 -24.24

-4.38 -6.34

-I.50 -2.16

-20.54 -25.52

-6.23 -7.60

-2.54 -3.06

-31.67 -35.12

-15.20 -14.5g

-9.43 -8.90

-39.53 -42.56

-23.19 -20.68

-13.19 -14.50
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1ABLEVIII. - RESULTSFORCANTILEVERBEAMWITH
PRETWISTa

Tip loading
direction

Flapwlse

Edgewise

Normalized response at beam tip

TRIA3 TRIA6 HEX20 HEXA8 HEX20(R)

0.993 0.998 0.985 0.977 0.995

.985 .998 .995 .983 .991

aTrlangular elements used as recommended by

NASIRAN (NO element distortions).

TABLE IX. - RESULTS SHOWING EFFECT OF ASPECT RATIO

(a) Aspect ratio = l.O

Number of Normalized lateral deflection at center

node spaces a

per edge of QUAD4 QUAD8 HEXA8 HEX20 HEX20(R)
model

0.981

1.004

1.003
1.002

0.927

.996

.999
l.O00

0.989

.998

.g99
l.O00

0.023

.738

.967

.991

l.0?3

.993

l.Oil

l.008

(b) Aspect ratio = 5.0

Number of Normalized lateral deflection at center

node spaces a

per edge of QUAD4 QUADS HEXA8 HEX20 HEX20(R)
model

2
4

6

8

1.052
.991

.997

.998

1.223
1.003

l.O00

l.O00

0.955
.978

.990

.995

0.028

.691
1.066

1.026

l.139

.995
l.024

l.006

aFor elements with mldslde nodes, the number of

elements per edge of model is equal to one-half the

number of node spaces.
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TABLEX. - VIBRATIONRESULTSFORCAMBEREDCOMPRESSORBLADE(REF. 23)

Mode Symmetry Frequency, Hz

Numberof elements

67.5
I09.6
883.8

56.8
139.1
279.2
416.6
455.3
672.7

16

86
136
272
360
402
640
888
888

32

.0 86.0

.6 139.5

.4 253.7

.6 371.0

.4 413.6

.l 564.3

.9 818.6

.8 867.5

Test

ref. 5

86.6/85.6

135.5/134.5

259
351

395

531

743

851

Olson

ref. 5

86.6

139.2

251.5

348.6

393.4

533.4
752.1

746.4

Physical properties of blade

Material:
Thickness:

Radius of curvature:

Length:
Width (developed):

A = Antl-symmetr_c mode

S = Symmetric mode

Sheet steel

0.120 in.

24 in.

12 in.

12 in.
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TABLE XII. - SUMMARY OF TEST RESULTS FOR NASTRAN

SOLID ELEMENTS

Benchmark test

I. Patch test

2. Straight beam,
extension

3. Straight beam,

flapwlse

4. Straight beam,

edgewise
5. Straight beam,

flapwise

6. Straight beam,
twist

7. Swept beam,
edgewise

8. Swept beam,

flapwlse
9. Twisted beam,

edgewise/

flapwlse

lO. (I/4) flat plate
II. Scordells-low

shell

12. Cambered blade

(vibrations)
13. Twisted plate

(vibrations)

Mesh a

IRReg.
Both

Reg.

IRReg.

IRReg.

Both

Reg.

Reg.

Reg.

Reg.

Reg.

Reg.

Reg.

NASTRAN solld elements b

Average rating:

Approximate grade:

HEXAB HEX20

4 4

4 4

4 3

0 3

0 3

3 3

2 2

2 3

3 3

3 0

3 0

3 0

4 3

2.7 2.4

C+ C

HEX20(MI)

3.3
B

Notes:

(MI) = with modified integration.

a"Reg." = element shape not Intentlonally distorted.

a"IRReg." = element shape is intentionally distorted.

a"BOIH" = Both "Reg." and "IRReg." mesh used.

bRatlng System: 4 = Excellent; 3 = Good; 2 = Average;

l = Poor; 0 = N.G.
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TABLEXIIl. - EFFECTOFSIXTH
D.O.F. ONDEFLECTIONOF

SHELLTIP

Length,
ft

25
50

I00
160
20O

Deflection at midpoint
of shell tip, ft

5 DOF

0.03695

.2374
1.303

4.501

8.064

6 DOF

0.3696

.2375
1.307

4.509
8.075

Percent

error

0.03
.04

.31

.18

.14

TABLE XIV. - FICTITIOUS SET OF NORMAL ROTATION

M

Z

A

MZ

B

M

Z

C

STIFFNESS COEFFICIENTS FOR TRIANGLE

SHELL ELEMENTS (REF. 42)
i

l.O -0.5 -0.5

= (_EAt) 1.0 -0.5

sym. l.O

e

Z

A

0
Z

B

e
z

c

where _ = arbitrary coefficient
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TABLEXV. - MODALRESULTSFOR
SR-3C-3 PROPFANBLADEAT ZERO

RPM(REF. 43)

Mode KROT6wlth MSC/QUAD4,Hz

lO00 lO 000 lO0 000

l 203.5

2 444.8

3 663.3

4 815.2

a(206.8)
203.6

a(458.1 )
445.1

a(665.8)
663.5

a(858.6)
816.2

204.1

446.8

664.7

821 .l

aKROT6 with MSC/TRIA3.

TABLE XVI. - STRAIN GAGE RESULTS

FOR SR-3C-3 PROPFAN BLADE

ROTATING AT SPEED OF

8508 RPM (REF. 43)

Gage KROT6 with MSC/QUAD4,
In./In./In.

lO00 lO 000 lO0 000

380.? 380.0

2 79.5

3 145.1

a(402)
380.4

a(85.0)
79.4

a(174.0)
145.3

78.9

146.7

aKROT6 with MSC/TRIA3.
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TABLEXVII. - VIBRATIONSOFROTATINGTWISTED

PLATES(0 DEGREESSETTINGANGLE)

[IB= Ist bending (flap); IT = Ist torsion;

2B = 2nd bending (flap); 3B = 3rd bending

(flap); IE = Ist bending (edge);

= nondlmenslonal rotation speed.]

Mode/_ A B C 0 E

IB

0
2

6

IT

0

2

6

2B
0

2

6

3B

0
2

6

1E

0

2

6

3.42
4.08

7.35

20.B8

21

21.8

21.31

22.3

29.2

59.79
60.9

68.9

62.23

62.3

62.8

3.4
4.54

9.49

21.2
21.3

22.9

21.7

22.4

29.8

60.I

61.3
69.5

63.7

63.8

64.3

3.35
4.4

7.34

21.0B

21.2

22

21

22

29

59

60.I
68.3

63.8
63.8

64.4

4.16

7.41

19.56

20.52

23.03

29.8

62.0B

65.62

62.08
64.62

3.395

4.515

9.461

20.947
21.258

23.51

21.312

22.428

28.B61

60.032

61.164

69.468

62.374

62.722
62.417
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TABLEXVIII. - VIBRATIONSOFROTATINGTWISTED

PLATES(90 DEGREESSETTINGANGLE)

liB = Ist bending (flap); IT = Ist torsion;

2B = 2nd bending (flap); 3B = 3rd bending

(flap); IE = Ist bending (edge);

= nondlmenslonal rotation speed.]

Model_ A B C D E

IB
0

2

6

IT

0

2

6

2B

0

2

6

3B

0
2

6

IE
0

2

6

3.42
4.54

9.5

20.88

21.2

23.4

21.31

22.4

29.8

59.78
60.9

69.15

62.23

62.8

66.57

3.4
4.54

9.49

21.2

2l .5

23.7

21.7

22.4

29.8

60.1

61.2
69.5

63.7

63.8

64.4

3.35
4.49
9.48

21.08

21.4

23.6

20.96

22.1

29.6

59
60.I

68.5

63.8

63.8

64.1

4.16

9.53

19.76

22.2

23.12

30.4

62.15

66.17

62.8

70.64

3.4

4.04

9.32

20.95

21.06

21.94

21.31

22.34

29.25

60.03
61.13

69.21

62.37

62.44

62.99
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ZLOCAL

I WDISP. VDISP.

I YLOCAL &

I ./'_ _( _u_
] / G3 Y

I .I/" _ / Bx --uDISP.

G2 "-.

XLOCA L

FIGURE I. - COSMIC NASTRAN's TRIA2.

Gq

/
GI

G3

G2

FIGURE 2. - COSMIC NASTRAN's QUAD2.

YLOCAL

FIGURE 3. - THE CLOUGH TRIANGLE FOR COSMIC/NASIRAN.

G3

ZLOCAL

I WDISP.

G_ J
YL OCAL

I i,"VDisP.

f

\

x'Wk XLOCA L

G2 UDISP '

FIGURE _. - THE SAP SHELL ELEMENT FOR COSMIC/NASTRAN.
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G5q

Gli

ZLOCAL

t
G8

DISP.

.j.II IrYLocAL_ G7

"_XLocA L

FIGURE 5. - MSC/NASTRAN's HEX8.

VDISP.

1_...,iv

UDISP.

WDISP.

G20 G8

G13f G_ ,G7

G2

FIGURE G. - MSC/NASTRAN's HEX20.

__----l,-VoisP'

UDlsP'

YLOCAL

I___

G1 G2

FIGURE 7. - MSC/NASTRAN's TRIA3.

_'-XLocAL

B+Y

YLOCAL o = 2

t

-- LOCAL

G1 G2

FIGURE 8. - MSC/NASTRAN's QUAD4.
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G3

YL

_,-XLOCAL _G2

FIGURE 9. - MSC/NASTRAN's TRIAG.

YLOCAL

t F YMATERIAL
/

// /--XMATERIAL

11 "_XLocALG2

FIGURE 10. - MSC/NASTRAN's OUAD8.

Z

Y X

B

FIGURE 11. - SCORDELIS-LO ROOF. RADIUS = 25.0; LENGTH = 50.0;

THICKNESS = 0.25; E = 4.32xI08; v = 0.0; LEADING = 90.0 PER

UNIT AREA IN -Z DIRECTION; UX = UZ = 0 ON CURVED EDDES_ MESH:
N x N ON SHADED AREA.

,_ __CN_RLD_ETLIIJiL_HEA;_CoTw
_L, J SHELL SOLUTION

4,0 --'_ / = 3.703 IN.

_._ - -- __ ____.

_I _/ / o Msc._STRANOUAD_
I! Y / A CO_ICNASTRA_TRIA_

/
/ I I I I I I2.o I
0 200 400 GO0 800 1000 1200 I_00

DEGREES OF FREEDOM (I/4 MODEL)

FIGURE 12. - CONVERGENCE OF NASTRAN ELEMENTS IN SCORDELIS-LO

ROOF.
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YT
b

LOCATION OF INNER NODES:

X Y

1 0.04 0.02

2 .18 .03

3 .16 .08

4 .08 .08

FIGURE 13. - PATCH TEST FOR PLATES.

1 = 0.001; E =1.0x106: V = 0.25.
a = 0.12; b = 0.24;

X

(
IY

,_ 11 , I

i-7--± ........ _-- --'_

/
/,
FIGURE 14. - PATCH TEST FOR SOLIDS.

E = 1.0xi06; u = 0.25.

LOCATION OF INNER NODES:

x Y 1

I 0.249 0.342 0.192

2 .826 .288 .288

3 .850 .649 .263

4 .273 .750 .230

5 .320 .186 .643

6 .677 .305 .683

7 .788 .693 .644

8 .165 .745 .702
X

OUTER DIMENSIONS: UNIT CUBE;

P= 1.0

(A) REGULAR SHAPE ELEMENTS.

450 450

P= 1.0

(B) TRAPEZOIDAL SHAPE ELEMENTS.

P= 1.0

/ / / / / I
(C) PARALLELOGRM SHAPEELEMENTS.

FIGURE 15. - UNTWISTED CANTILEVER BEAM. LENGTH = 6.0;

WIDTH = 0.2; DEPTH = 0.1: E = 1.0xi0/; u= 0.30;

MESH = 6 x I: LOADING: UNIT FORCES AT FREE END.

NOTE: ALL ELEMENTS HAVE EQUAL VOLUME.

900

FIGURE 16. - CANTILEVER BEAM WITH SWEEP. INNER RADIUS = 4.12:

OUTER RADIUS = 4.32; ARC = 900; THICKNESS = 0.1: E = 1.0xi07;

U = 0.25; MESH = 6 x I; LOADING: UNIT FORCES AT TIP.
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h

- a , X

FIGURE 17. - MSEC4ESH TRIANGLE MESH IN MSCINASTRAN.

FIXED

END

FIGURE 18. - TWISTED BEAM. LENGTH = 12.0; WIDTH = 1.1;

DEPTH = 0.32; TWIST = 900 (ROOT TO TIP); E = 29.0x10G;

v = 0.22; MESH = 12 x 2; LOADING: UNIT FORCES AT TIP.

SYM _____

I SYM1'I ,
I i

, b

FIGURE 19. - RECTANGULAR PLATE. a = 2.0; b = 2.0 OR I0.0; THICK-

NESS = 0.0001 (PLATES); THICKNESS = 0.1 (SOLIDS); E = 1.7q12x107;

u = 0.3; BOUNDARIES = SIMPLY SUPPORTED OR CLAMPED: MESH = N x N

(ON I/4 OF PLATE); LOADING: UNIFORM PRESSURE. q = I0-4 OR CENTRAL

LOAD P = q.Ox10 -4.

I" L "I

(A) ISOPARAMETRIC ELEMENT.

.I- ACTUAL RESIDUAL
7

/ BENDING DUE TO

&/__/' TRANSVERSE SHEAR

II

_- ISOPARAMETRIC REPRESENTATION

(B) PURE BENDING DEFORMATION.

T S

(C) PURE SHEAR DEFORMATION.

FIGURE 20. - DISTORTION MODES OF STANDARD ISOPAR_TRIC ELEMENTS.
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Y

k = 12 IN.

C=6 IN,

FIGURE 21. - VIBRATIONS OF A CAMBERED COMPRESSOR BLADE.

4.0

3.8_,

3.6

3.4 _ _-

3.2" • !'_

3.0 "-
e-

2.8

_ 2.6

_2.4

_2.2
(A) FIRST BENDING MODE: 0/0:

a/b = I; b/h = 20.

40

/

35

25

20

15

10

5
0 15 30 45 60

TWIST ANGLE, DEG

(B) FIRST TORSION MODE: I/0;

a/b = I; b/h = 20.

FIGURE 22, - DEPENDENCE Of FREQUENCY PARAMETER ON TWIST ANGLE.
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OF pOOR QUALITY

c) z

FIGURE 23, - CO-PLANAR ELEMENTS.

r = 10,25 IN. _,,._

, i
r = 9,7 IN. _

GAGE LOCAIIONS

7 )

TRIA3 MODEL (TRIANGLES NEARLY

X -_-..,_ y IN. __ I-

E=_ox,o__, -_--_"--_S
V = 0 QUAD4 MODEL

FIGURE 2q. - EFFECT OF SIXTH DOF ON DEFLECTION OF CAMBERED BLADES. FIGURE 25. - SR-3C-3 PROPFAN BLADE - FINITE ELEMENT GRID.
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